285 research outputs found

    Non-universal minimal Z' models: present bounds and early LHC reach

    Get PDF
    We consider non-universal 'minimal' Z' models, whose additional U(1) charge is a non-anomalous linear combination of the weak hypercharge Y, the baryon number B and the partial lepton numbers (L_e, L_mu, L_tau), with no exotic fermions beyond three standard families with right-handed neutrinos. We show that the observed pattern of neutrino masses and mixing can be fully reproduced by a gauge-invariant renormalizable Lagrangian, and flavor-changing neutral currents in the charged lepton sector are suppressed by a GIM mechanism. We then discuss the phenomenology of some benchmark models. The electrophilic B-3L_e model is significantly constrained by electroweak precision tests, but still allows to fit the hint of an excess observed by CDF in dielectrons but not in dimuons. The muonphilic B-3L_mu model is very mildly constrained by electroweak precision tests, so that even the very early phase of the LHC can explore significant areas of parameter space. We also discuss the hadrophobic L_mu-L_tau model, which has recently attracted interest in connection with some puzzling features of cosmic ray spectra.Comment: 29 pages, 13 figure

    A Proposal for a Near Detector Experiment on the Booster Neutrino Beamline: FINeSSE: Fermilab Intense Neutrino Scattering Scintillator Experiment

    Get PDF
    219 pages219 pagesUnderstanding the quark and gluon substructure of the nucleon has been a prime goal of both nuclear and particle physics for more than thirty years and has led to much of the progress in strong interaction physics. Still the flavor dependence of the nucleon's spin is a significant fundamental question that is not understood. Experiments measuring the spin content of the nucleon have reported conflicting results on the amount of nucleon spin carried by strange quarks. Quasi-elastic neutrino scattering, observed using a novel detection technique, provides a theoretically clean measure of this quantity. The optimum neutrino beam energy needed to measure the strange spin of the nucleon is 1 GeV. This is also an ideal energy to search for neutrino oscillations at high Δm2\Delta m^2 in an astrophysically interesting region. Models of the r-process in supernovae which include high-mass sterile neutrinos may explain the abundance of neutron-rich heavy metals in the universe. These high-mass sterile neutrinos are outside the sensitivity region of any previous neutrino oscillation experiments. The Booster neutrino beamline at Fermilab provides the world's highest intensity neutrino beam in the 0.5-1.0 GeV energy range, a range ideal for both of these measurements. A small detector located upstream of the MiniBooNE detector, 100 m from the recently commissioned Booster neutrino source, could definitively measure the strange quark contribution to the nucleon spin. This detector, in conjunction with the MiniBooNE detector, could also investigate νμ\nu_{\mu} disappearance in a currently unexplored, cosmologically interesting region

    Comparisons and challenges of modern neutrino scattering experiments (TENSIONS2016 report)

    Get PDF
    Over the last decade, there has been enormous effort to measure neutrino interaction cross sections important to oscillation experiments. However, a number of results from modern experiments appear to be in tension with each other, despite purporting to measure the same processes. The TENSIONS2016 workshop was held at University of Pittsburgh July 24–31, 2016 and was sponsored by the Pittsburgh Particle Physics, Astronomy, and Cosmology Center (PITT PACC). The focus was on bringing experts from three experimental collaborations together to compare results in detail and try to find the source of tension by clarifying and comparing signal definitions and the analysis strategies used for each measurement. A set of comparisons between the measurements using a consistent set of models was also made. This paper summarizes the main conclusions of that work

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    Improved Search for νˉμνˉe\bar ν_μ\rightarrow \bar ν_e Oscillations in the MiniBooNE Experiment

    Get PDF
    Submitted to PRL. Further information provided in arXiv:1207.4809Submitted to PRL. Further information provided in arXiv:1207.4809The MiniBooNE experiment at Fermilab reports results from an analysis of νˉe\bar \nu_e appearance data from 11.27×102011.27 \times 10^{20} protons on target in antineutrino mode, an increase of approximately a factor of two over the previously reported results. An event excess of 78.4±28.578.4 \pm 28.5 events (2.8σ2.8 \sigma) is observed in the energy range 200<EνQE<1250200<E_\nu^{QE}<1250 MeV. If interpreted in a two-neutrino oscillation model, νˉμνˉe\bar{\nu}_{\mu}\rightarrow\bar{\nu}_e, the best oscillation fit to the excess has a probability of 66% while the background-only fit has a χ2\chi^2-probability of 0.5% relative to the best fit. The data are consistent with antineutrino oscillations in the 0.01<Δm2<1.00.01 < \Delta m^2 < 1.0 eV2^2 range and have some overlap with the evidence for antineutrino oscillations from the Liquid Scintillator Neutrino Detector (LSND). All of the major backgrounds are constrained by in-situ event measurements so non-oscillation explanations would need to invoke new anomalous background processes. The neutrino mode running also shows an excess at low energy of 162.0±47.8162.0 \pm 47.8 events (3.4σ3.4 \sigma) but the energy distribution of the excess is marginally compatible with a simple two neutrino oscillation formalism. Expanded models with several sterile neutrinos can reduce the incompatibility by allowing for CP violating effects between neutrino and antineutrino oscillations

    Using L/E Oscillation Probability Distributions

    Get PDF
    This paper explores the use of L/EL/E oscillation probability distributions to compare experimental measurements and to evaluate oscillation models. In this case, LL is the distance of neutrino travel and EE is a measure of the interacting neutrino's energy. While comparisons using allowed and excluded regions for oscillation model parameters are likely the only rigorous method for these comparisons, the L/EL/E distributions are shown to give qualitative information on the agreement of an experiment's data with a simple two-neutrino oscillation model. In more detail, this paper also outlines how the L/EL/E distributions can be best calculated and used for model comparisons. Specifically, the paper presents the L/EL/E data points for the final MiniBooNE data samples and, in the Appendix, explains and corrects the mistaken analysis published by the ICARUS collaboration

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Measurement of the W+WW^+W^- Production Cross Section and Search for Anomalous WWγWW\gamma and WWZWWZ Couplings in ppˉp \bar p Collisions at s=1.96\sqrt{s} = 1.96 TeV

    Get PDF
    This Letter describes the current most precise measurement of the WW boson pair production cross section and most sensitive test of anomalous WWγWW\gamma and WWZWWZ couplings in ppˉp \bar p collisions at a center-of-mass energy of 1.96 TeV. The WWWW candidates are reconstructed from decays containing two charged leptons and two neutrinos, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector from 3.6 fb1^{-1} of integrated luminosity, a total of 654 candidate events are observed with an expected background contribution of 320±47320 \pm 47 events. The measured total cross section is σ(ppˉW+W+X)=12.1±0.9(stat)1.4+1.6(syst)\sigma (p \bar p \to W^+ W^- + X) = 12.1 \pm 0.9 \textrm{(stat)} ^{+1.6}_{-1.4} \textrm{(syst)} pb, which is in good agreement with the standard model prediction. The same data sample is used to place constraints on anomalous WWγWW\gamma and WWZWWZ couplings.Comment: submitted to Phys. Rev. Let
    corecore